Which Links Must Be Broken?

The collagen strands that provide strength and flexibility to our tissues are crosslinked by chemical bonds that tie the component proteins into a mesh-like structure. Until recently, the consensus in the field has been that a gradual increase in such crosslinks – and particularly those considered ‘irreversible’ due to their high stability – is a principle driver of the age-related loss of elasticity that leads ultimately to mechanical failure of the blood vessels, muscles, and other tissues.

The SENS platform proposes to resolve this class of damage by introducing enzymes or small molecule drugs capable of selectively degrading the offending crosslinks. However, the sheer number of crosslinks of a given kind may not be a good measure of how high a priority it ought to be for rejuvenation biotechnology: some crosslinks may have a disproportionate effect on tissue elasticity depending on where they occur in the protein strand, how tightly they bind, and how much they interfere with the body’s ability break down and renew the tissue.

Our funded project in the laboratory of Dr. Jonathan Clark at Cambridge’s Babraham Institute is focused on precisely this question of prioritization. Three new papers released by the group this year have established that the simple model in which highly stable crosslinks accumulate over the lifespan is unlikely to be the full story; provided the first evidence that crosslinking within collagen can vary in response to mechanical forces; and identified a potential relationship between specific crosslink precursors and the cancer microenvironment. These results will be crucial to the development of effective therapeutics.

Therapy to Destroy Cells with Reactivated “Jumping Genes”

Roswell Park Comprehensive Cancer Center

Principal Investigator: Andrei Gudkov
Research Team: Marina Antoch, Amy Stablewski, Nick Neznanov, Lilya Novototskaya, Olga Leontieva

Nearly half of the mammalian genome is long and short interspersed virus-like repetitive elements (LINEs and SINEs), which spread through the process of retrotransposition. Numerous cellular mechanisms exist to silence these elements, but unfortunately these mechanisms decline with age. Active copies of these elements thus cause DNA damage over time as they integrate into genes and disrupt their functions. Cells with many such dysfunctions can mimic viral infections and trigger the production of the pro-inflammatory substance interferon (IFN). Normally, such cells are removed by the immune system, but as the immune system itself ages, it becomes less effective at this type of cleanup. This leads to “inflamm-aging”, which damages tissues further.

Analysis of blind mole rats, which exhibit both a natural IFN-driven mechanism for eradicating cells with damaged DNA as well as exceptionally long lifespans, has yielded observations supporting the LINE/SINE hypothesis.

SRF is sponsoring a study to test the impact of the removal of damaged cells on healthspan and lifespan, via the creation of a special transgenic mouse at the Roswell Park Comprehensive Cancer Center.

Research Highlights:

This project began in the last quarter of 2019, and the Roswell Park team is now generating the transgenic mouse model. The group has already verified the transgene expression and activity in a cell culture model. Newborn mice are currently being screened for successful integration of the gene construct designed by the team. The final mouse model will allow the team to track the amount of IFN positive cells, and a lifespan study will begin later this year.

COVID-19 and Aging

A message from Edward James Olmos

Why is the novel coronavirus so deadly to the elderly?

A pandemic has swept the globe, infecting millions and leaving over five hundred thousand dead. In response, millions wait in lockdown at home, while millions more brave the risk of infection to deliver food, medicine, electricity, clean water, and other essential services. A growing number of health workers, meanwhile, face the disease head-on in our hospitals, fighting to save patients from “drowning on dry land.”

All wait in anticipation for the scientists, who labor at a pace that is both record-breakingly rapid yet frustratingly slow to bring us a way out: a drug, a vaccine — a hope.

Through all the daily updates on the sick and the dead, on testing and hospital capacity and changing public health guidance, there remains one constant: by far the greatest predictor of death from this plague is age. The so-called comorbidities predisposing patients to death from COVID-19 — chronic lung diseases, damaged kidneys and hearts, high blood pressure, diabetes — are themselves aspects of aging, erupting in their distinctive ways in particular tissues. Flattening this “demographic curve” of degenerative aging would reduce COVID-19 to a disease similar in impact to an average recent flu season (and make future flu seasons less deadly), while also putting an end to the staggering toll of age-related death and debility that ticks on in the background even now, day in and day out, pandemic or none.

Ending that toll is our mission. At SENS Research Foundation, we develop rejuvenation biotechnologies: new therapies that will repair the accumulated cellular and molecular damage in our tissues and restore youthful function.

The SARS-CoV-2 pandemic is both an immediate, pressing danger, and a call to action. It demonstrates the critical need for better long-term strategies for addressing threats to human life. As members of the global scientific community, all of us at SRF acknowledge the need to adapt and apply our expertise and experience to the current crisis. (SARS-CoV-2 is the coronavirus that causes the disease called SARS-2 or COVID-19.)

Below, we outline some of the ways in which specific forms of aging damage are relevant to diseases like COVID-19 – and how some of our research programs may help render this and other viruses far less dangerous in the future.

Aging’s effect on COVID-19 mortality rate, and the anticipated effects of future rejuvenation biotechnologies.

Data taken from Lancet Infect Dis 2020 Mar 30. pii: S1473-3099(20)30243-7

Comorbidity by age group.

 Image credit: Lancet 380(9836):37-43.

Ending that toll is our mission. At SENS Research Foundation, we develop rejuvenation biotechnologies: new therapies that will repair the accumulated cellular and molecular damage in our tissues and restore youthful function.

The SARS-CoV-2 pandemic is both an immediate, pressing danger, and a call to action. It demonstrates the critical need for better long-term strategies for addressing threats to human life. As members of the global scientific community, all of us at SRF acknowledge the need to adapt and apply our expertise and experience to the current crisis. (SARS-CoV-2 is the coronavirus that causes the disease called SARS-2 or COVID-19.)

Below, we outline some of the ways in which specific forms of aging damage are relevant to diseases like COVID-19 – and how some of our research programs may help render this and other viruses far less dangerous in the future.

Rejuvenate the Immune System

The most obvious link between aging and COVID-19 is the aging of the immune system, or immunosenescence. Older people mount a much weaker and less complete immune response to both infection and vaccine, even as they suffer increasingly from overactive parts of the immune response, including autoimmunity and chronic inflammation. SENS Research Foundation has sponsored several projects aimed at developing damage-repair technologies to restore immune function, including pilot studies of a T-cell “scrubber” that might clear out a specific class of dysfunctional T-cells and early-stage work toward a tissue-engineered thymus, along with a pilot animal study to simulate the effects of both of these interventions.

In today’s pandemic, COVID-19 patients suffer from an exhaustion of natural killer (NK) and CD8+ (“killer”) T-cells. Whereas T-cells and B-cells are specialists, focused on eliminating specifically-identified threats (such as cells infected with specific viruses), NK cells are sentinels patrolling the perimeter of a military camp, on the lookout for anything that looks like it doesn’t belong. Thus, NK cells attack abnormal cell types such as cancer cells, cells infected by viruses like SARS-CoV-2, and senescent cells — that is, cells that have undergone changes that prevent them from replicating, and that spew out a witches’ brew of inflammatory signaling molecules, growth factors, and enzymes that break down proteins. This brew is called the senescence-associated secretory phenotype, or SASP.

Long before the pandemic hit, we knew that NK cells lose much of their effectiveness with age, meaning that aging people already come into the fight against infections like SARS-CoV-2 with these critical early responders weakened. At our Research Center, Dr. Amit Sharma and Elena Fulton have been developing strategies to rejuvenate and reinforce NK cells in aging people. They recently collected preliminary data showing that the proportion of NK cells exhibiting markers of strong cell-killing ability declines sharply with age. To confirm this preliminary finding, they will look for an age-related reduction in NK cells’ ability to kill senescent cells, using NK cells freshly isolated from young adult, middle-aged, and older people. They will run parallel tests on NK cells from the spleens of young (6 months) and old (24 months) mice. Moving from basic research to anti-aging intervention, the team is developing strategies to enhance senescent-cell-killing ability in old NK cells. They will test rejuvenation strategies including adoptive transfer of young NK cells into aging mice, and agents that sidestep the protective shielding that senescent cells throw up to defend themselves against NK cells. If transferring young NK cells works as a proof of concept, it would support moving forward by adapting immune transfer biotechnologies already in use for cancer therapies to instead selectively target senescent cells.

Purge Senescent Cells

For Younger Lungs...

Some of the rejuvenation strategies being tested by Elena and Dr. Sharma will likely enhance aging NK cells’ ability to eliminate any kind of abnormal cell, including those infected by SARS-CoV-2. But the SENS lab is focused on rejuvenating the capacity of NK cells to eliminate senescent cells because of their broad role in driving aging pathology, and it’s not a coincidence that many of their ill effects directly impact a person’s vulnerability to COVID-19.

First is senescent cells’ role in driving fibrosis in our tissues. Multiple aspects of lung function decline with age, while fibrosis increases. Accordingly, diseases of the lung — including chronic obstructive pulmonary disease, lung cancer, and most especially idiopathic pulmonary fibrosis (IPF) — are profoundly age-related. Preliminary evidence suggests that the lung is one of the tissues most burdened with senescent cells with age in humans — a burden further exacerbated by IPF.

We’ve known for a while that the age-related loss of lung function is a massive driver of risk of death from pneumonia. Aging people not only have fewer functional alveoli available, but progressively lose the ability to inhale and exhale deeply to compensate for alveoli taken offline by the infection. Continuing research suggests that eliminating senescent cells in the lung may preserve and restore youthful lung function, leaving the lungs better prepared to endure the attack of the SARS-CoV-2 virus and other causes of pneumonia.

Senolytic drugs, which selectively kill senescent cells, have been shown to reverse lung fibrosis and other tissue fibrosis in aging mice. Studies in aging mice with inbuilt “suicide genes” demonstrate that ablating senescent cells in aging mice restores youthful lung compliance, suggesting an opportunity to do the same with other senescent-cell elimination strategies, such as restoring the ability of NK cells to eliminate them from tissues. Further supporting this, lung fibrosis is partially reversed by two different senolytic drugs in mouse models of IPF, and a third senolytic partially reversed lung fibrosis in mice whose lungs have suffered radiation damage.

... and a Rejuvenated Signaling Environment

In addition to lung damage, another way that senescent cells may exacerbate COVID-19 involves the SASP cocktail of abnormal secretions. One important component of the SASP is an inflammatory factor called IL-6, which rises with age and predicts the risk of frailty and death even without SARS-CoV-2 infection. Now a new report indicates that a hospitalized COVID-19 patient’s IL-6 level is a strong risk factor for going on to require a ventilator, suggesting that senescent cells make aging people more vulnerable to the disease, and that senescent cell ablation could shore up this vulnerability. These findings are so compelling that some clinical centers treating critically ill COVID-19 patients are making experimental use of monoclonal antibody therapies such as tocilizumab and sarilumab, which block IL-6’s access to its receptors. But if we restore NK cells’ ability to eliminate senescent cells, people infected with SARS-CoV-2 would start off with lower IL-6 levels more characteristic of a young person, and thus better prepared for the fight.

In addition to IL-6, it’s recently been discovered that there is a network of factors emitted in the SASP that trigger the formation of blood clots and impede the countervailing factors that dissolve them. It’s long been known that an imbalance in these factors becomes increasingly common as people age, especially if they have risk factors for cardiovascular disease. The discovery that the SASP could tip the balance toward excessive coagulability, combined with the fact that aging people’s tissues become increasingly riddled with senescent cells over time, suggests that senescent cells and their SASP may be a key driver of this process.

Senescent cells’ possible culpability in the pro-clotting bias in aging people’s blood was already an important avenue for research before the rise of COVID-19, since the excessive tendency to form and maintain clots puts them at greater risk of heart attack, stroke, and venous thromboembolism (VTE) — abnormal clots forming in the veins. But it becomes a matter of acute focus in the face of multiple reports that high levels of markers of excessive clotting are common in COVID-19 patients at hospitalization, and foreshadow admission to the ICU and death from or with COVID-19 (in Holland and in Wuhan). Indeed, despite receiving prophylactic anti-clotting medication, nearly a third of Dutch patients with COVID-19 suffered from dangerous blood clots, including very commonly VTE that work their way up to cut off the lung tissue’s own blood supply, starving the lung itself of oxygen even as it is under attack by the virus and the patient’s own immune system.

Medical researchers have suggested a number of possible causes of excessive clotting specific to COVID-19, but as usual, the role of aging itself has been almost entirely ignored, despite the powerful influence of age in one’s risk of dying of the disease. Older people’s burden of senescent cells, the recent research suggests, may be predisposing them to a clotting crisis if infected by SARS-CoV-2.

Fortunately, the same research that originally identified the pro-clotting cocktail in the SASP also suggests that rejuvenation biotechnology could eliminate the associated risk of dangerous blood clots. Mice, like people, suffer a rise in senescent cell burden when given the chemotherapy drug doxorubicin, which then release SASP factors that favor the formation and stability of blood clots. In response, the mice produce higher levels of clot-initiating platelets, and those platelets are placed on a hair trigger. Activating a senescent-cell-destroying suicide gene prevented all of these things from happening, suggesting that purging aging cells from aging people could also leave them better prepared to survive an infection with SARS-CoV-2.

Work is already underway to translate these exciting results into human rejuvenation therapies. Mayo Clinic researchers last year conducted a very early-stage clinical trial of drugs that trigger self-destruction of senescent cells in human patients with IPF. Although there were few clearly apparent benefits to senolytic therapy in this study, it was too short-term and involved too few patients (just 14) to expect anything obvious: happily, the researchers are working to expand this pilot study into a larger clinical trial, and other such trials are underway in patients with kidney disease and osteoarthritis, diseases also driven by senescent cells. We will soon begin seeing what these therapies can do to maintain our health and resilience against the forces of degenerative aging and COVID-19.

Trigger Self-Destruction of Mutation-Prone Cells

More than half of the human genome is invasive genetic data left behind by viruses, including millions of retrotransposons. Retrotransposons are “dead” DNA, but their long- and short- interspersed virus-like repetitive elements (LINEs and SINEs) encode machinery that —under certain circumstances — allows them to reactivate, replicate, and spread through the genome. These reactivation events can cause mutations in our functional genes and even disrupt the normal expression of non-mutated genes, leading to cancer, cellular self-destruction (apoptosis), and cellular senescence.

To develop a proof of concept for a new class of “retrolytic” drugs that would ablate these cells before they can further damage the body, SENS Research Foundation is sponsoring work by Dr. Andrei Gudkov and his team at the Roswell Park Comprehensive Cancer Center for a suicide-gene system similar to the groundbreaking INK-ATTAC system that paved the way for the senolytic revolution. As a side-benefit, the gene whose expression will activate the retrolytic suicide gene is also activated in cells with active viral infection (such as SARS-CoV-2), which may eliminate such cells before they are hijacked by the virus to replicate itself.

Transplant Mitochondria to Rescue Critical Lung Cells

Recent gene-expression and protein distribution studies demonstrate that the ACE2 receptor — the critical loophole through which the SARS-CoV-2 virus slips into our cells — is more enriched in a type of lung cell known as AT2 cells, and COVID-19 patient autopsy reports indicate that these cells are subject to a terrible assault during the disease. AT2 cells are critical support cells for type I alveoli — the tiny air sacs that expand and contract to effect gas exchange and respiration. AT2 cells produce the pulmonary surfactant that allows type I alveoli to expand again after contraction by reducing alveolar surface tension. This surfactant also facilitates the exchange of gases between the oxygen-poor, CO2-enriched venous blood and the relatively oxygen-rich air in the lungs; we believe the virus’s assault on these cells is a major contributor to respiratory failure.

It’s these same AT2 cells that fail in an animal model of septic pneumonia, and these mice are rescued by transplanting bone marrow stem cells that donate their mitochondria to the failing AT2. Dr. Amutha Boominathan and Nana Anti of our mitochondrial mutation rescue team have been developing our mitochondrial transplantation protocol. Their initial target is different, but we hope it will treat many conditions of acute energy depletion, as is already being done in small open clinical trials for babies with heart damage from ischemia-reperfusion injury.

Conclusion

Like the pandemic, aging touches all of us. It creeps silently through our tissues, progressively crippling our minds and bodies, and eventually killing us if we don’t die first of accident, violence, or other abrupt age-independent causes. In COVID-19, the damage caused by aging is the largest factor in determining who lives and who dies, even if the trigger was pulled by a virus spread by globalization. The need for rejuvenation biotechnologies as part of medicine has never been clearer, and so we strengthen our resolve. Restoring our cells and tissues to youthful vigor will allow us to step out of our ancient lockdown and into a bright future.

Watch the space below for announcements and progress.

Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy.
Onder G, Rezza G, Brusaferro S.
JAMA. 2020 Mar 23. doi: 10.1001/jama.2020.4683. [Epub ahead of print] PubMed PMID: 32203977.

The dramatically higher case-fatality rate for COVID-19 in Italy as compared with anywhere else in the world (including in the epicenter of the pandemic in Wuhan, China) has been the subject of much speculation and concern. These investigators find the phenomenon to be almost entirely explained via the age structures of the populations, with a much larger share of persons aged >65 in Italy. Looking within each age group, the case-fatality rates in Italy and China are highly comparable for all persons >65, but were higher in Italy in persons age >70 and even more so in those >80 years; these numbers are skewed, however, by the particularly low number of people in these age groups in China as a share of persons >65, and especially the lack of any patients aged >90 in the Chinese reports, who were at very greatly increased risk of death in Italy.

Convalescent plasma transfusion for the treatment of COVID-19: Systematic review.
Rajendran K, Narayanasamy K, Rangarajan J, Rathinam J, Natarajan M, Ramachandran A.
J Med Virol. 2020 May 1. doi: 10.1002/jmv.25961. [Epub ahead of print] Review. PubMed PMID: 32356910.

Convalescent plasma is a very old therapy, first used for diphtheria in the late nineteenth century. Doctors often turn to it for new infections in the absence of established medical therapy, and this has been the case in COVID-19. Available studies appear generally favorable, but are all very small and have no control group, and the evidence for convalescent plasma in most diseases is weak; it was used successfully to treat Ebola, but in a randomized trial of 140 children and adults, it was found no more effective against influenza than control plasma from uninfected subjects. Importantly, it did seem to have salutary effects in the original SARS virus, including some controlled trials; however, none of the trials were of high quality. Three randomized controlled trials are underway in the United States to test the intervention: one to protect medical workers who are not yet infected from the disease, and two in hospitalized patients at different stages in the disease progression.

 A key limitation of the therapy is the low ratio of recovered patients compared to those needing therapy; if it works, it could be the basis for a monoclonal antibody therapy, which could be scaled up to treat far more patients and could likely be made more effective. It would also provide some preliminary confidence for the possibility of a vaccine, whose prospects are uncertain at this time. Fortunately there has been no evidence of antibody-dependent enhancement (ADE) in the use of convalescent plasma for either SARS or COVID-19, although ADE was observed in animal models of SARS and in response to an experimental SARS vaccine in nonhuman primates.

New 2020 Publications

2020 has already seen six new SRF-supported papers – including validation of a key tactic to prevent mitochondrial aging by our MitoSENS team, and an in-depth review coauthored by SRF, Underdog Pharmaceuticals and professor W. Gray Jerome on the major LysoSENS target 7-ketocholesterol.

Read the MitoSENS and LysoSENS papers for free at PubMed Central:

… or visit our Publications Library to see more of our recent work!

Revel Pharmaceuticals Launched

Glucosepane crosslink breaker research graduates from top Yale lab into the biotech world

Kizoo Technology Capital leads seed round financing at Revel Pharmaceuticals

SAN FRANCISCO/NEW HAVEN/BERLIN, Jan. 21, 2020 — For the past 10 years, Yale Professors David Spiegel and Jason Crawford have been working on tools to enable the development of glucosepane-cleaving drugs. Kizoo Technology Capital investors say now is the time to advance this groundbreaking research toward the clinic and are leading funding of a new company, Revel Pharmaceuticals Inc., founded by Drs. David Spiegel, Jason Crawford, and Aaron Cravens.

Kizoo leads the seed financing round at Revel, with Oculus co-founder Michael Antonov participating. SENS Research Foundation provided funding to the YaleGlycoSENS group for several years.

Glucosepane Biology in relation to Aging and Disease

The long-lived collagen proteins that give structure to our arteries, skin, and other tissues are continuously exposed to blood sugar and other highly reactive molecules necessary for life. Occasionally, these sugar molecules will bind to collagen and form toxic crosslinks that alter the physical properties of tissues and cause inflammation. As a result, tissues slowly stiffen with aging, leading to rising systolic blood pressure, skin aging, kidney damage, and increased risk of stroke and other damage to the brain.

Perhaps the most important of these Advanced Glycation End-products (AGE) crosslinks is a molecule called glucosepane. Revel is developing therapeutics that can cleave glucosepane crosslinks thus maintaining and restoring the elasticity of blood vessels, skin, and other tissues, and preventing the terrible effects of their age-related stiffening.

Revel opens a new category in the SENS repair approach to aging

The Yale group’s first major milestone – the first complete synthesis of glucosepane – was highly recognized when published in Science. Since then progress has been rapid, with development of glucosepane binding antibodies and discovery of therapeutic enzyme candidates capable of breaking up glucosepane crosslinks. Revel will build upon this progress by advancing the first GlycoSENS therapeutics into the clinic.

This is truly a first. We are proud to help Revel open an entirely new category in repairing a significant damage of aging – crosslinking of collagen. Glucosepane crosslinks may cause not only wrinkles on your face but also lead to age-related rising blood pressure and possibly stroke.” says Frank Schueler, Managing Director of Kizoo Technology Capital.

David Spiegel, MD, PhD, Professor of Chemistry at Yale University and Revel founder says: “We are delighted to join Kizoo in building a world-class team to advance crosslink-breaking therapeutics into the clinic. These first-in-class agents have enormous potential to help patients suffering from a wide range of diseases.

Collagen is the infrastructure of our bodies – in every tissue, supporting cellular function and health – but with aging, this critical molecular infrastructure accumulates damage. By clearing out this damage, we can restore tissue function and repair the body. Revel is one of only a few companies taking a repair-centric approach to treat diseases of aging and one day our AGE-cleaving therapeutics will undo this damage at the molecular level.” says Aaron Cravens, co-Founder of Revel Pharmaceuticals.

About Revel

Revel Pharmaceuticals is a biotechnology company located in San Francisco, CA. with a technology platform based on the work of Yale Professors David Spiegel and Jason Crawford. We are commercializing therapeutic designer enzymes to degrade molecular damage that accumulates with aging. By addressing one of the hallmarks of aging, Revel is strategically positioned to develop therapeutics for multiple diseases of aging including osteoarthritis, kidney disease, cardiovascular disease, skin aging, and complications of diabetes.

See www.revelpharmaceuticals.com

About Kizoo

Kizoo provides mentoring and seed and early-stage financing with a focus on rejuvenation biotechnology. Having been entrepreneurs, VCs, and mentors in both high-growth tech and biotech companies for many years, with multiple exits and massive value created for the founders, Kizoo now brings this experience to the emerging field of rejuvenation biotech – a young industry that will eventually become much bigger than today’s largest technology markets.

As part of the Forever Healthy Group, Kizoo directly supports the creation of startups turning research on the root causes of aging into therapies and services for human application. Investments include AgeX, FoxBio, Turn.bio, Elevian, Oisin Biotechnologies, Underdog Pharmaceuticals, MAIA Biotechnology, and others.

Forever Healthy’s other initiatives include the evaluation of new rejuvenation therapies, evidence-based curation of the world’s cutting-edge medical knowledge, funding research projects on the root causes of aging, and hosting the annual Undoing Aging Conference.

For more information, please visit kizoo.com and forever-healthy.org

Contact:
Frank Schueler
Managing Director, Kizoo Technology Capital GmbH
Amalienbadstr. 41, 76227 Karlsruhe
[email protected], +49 721 51600

Underdog Pharmaceuticals Launched

Novel therapeutic approach to cardiovascular disease from SENS Research Foundation flagship research program graduates from laboratory to the biotech world

Kizoo Technology Capital leads seed round financing at Underdog Pharmaceuticals

SRF announces leadership appointments

MOUNTAIN VIEW, Calif., Nov. 14, 2019 (GLOBE NEWSWIRE) — Underdog Pharmaceuticals, Inc. (Underdog), and SENS Research Foundation (SRF) today announced the launch of Underdog and the completion of its seed round, providing $3.95 million to promote Underdog’s development of disease-modifying treatments for atherosclerosis and other age-related diseases. SRF also announced two senior appointments.

The Underdog round is led by Michael Greve’s Kizoo Technology Capital, part of the Forever Healthy Group and one of the premier organizations focusing on accelerating rejuvenation biotechnologies. It also includes Oculus co-founder Michael Antonov through Tubus, LLC, and financier Harald McPike through Chambray Worldwide, Ltd.

Underdog was built from an SRF flagship program that has driven two years of applied development designed to explore and repair the underlying causes of cardiovascular disease. Its co-founders are Matthew O’Connor, Ph.D. and Michael Kope, formerly the V.P. of Research and the founding CEO, respectively, of SRF.

“We’ve taken a well-known and extremely safe compound,” said O’Connor, “and have created novel derivatives that can specifically target the toxic biomolecule that drives the development of atherosclerosis, the cause of most heart attacks and strokes.”

Underdog’s research has combined computational and synthetic chemistry programs to create custom-engineered cyclodextrins (polysaccharides with known industrial and pharmaceutical excipient uses) to capture, and remove from cells, oxidized cholesterol derivatives such as 7-ketocholesterol, which are broadly toxic molecules with no known biological function. “Underdog will take a classic pharmaceutical approach and use it to attack the root causes of cardiovascular disease,” said Kope. “If we’re successful, we won’t just be ameliorating the disease, but reversing it.”

Underdog’s advisors include world-renowned cyclodextrin expert Dr. Lajos Szente. “This elegant approach has the potential to be truly revolutionary,” Szente said. “I’m delighted to be working with them on this important advancement in the field.”

“I came to Aubrey de Grey years ago so that we could work together to accelerate the availability of human rejuvenation therapies,” said Greve. “I am proud to help SRF grow a flagship research program into a genuine company and to help unlock the required capital to develop a true rejuvenation therapy. I’m gratified that we’ve done this while continuing to allow for the health and growth of SRF itself, one of our most important engines for the rejuvenation pipeline.”

The agreement between the organizations will provide equity, royalties, and milestones for the future support of SRF programs.

As Underdog spins out, the V.P. of Research position at SRF has been assumed by Prof. Alexandra Stolzing. Stolzing, a long-standing SRF Research Advisory Board member, received her PhD from the Humboldt University in Berlin, was a postdoctoral fellow at Sheffield University, UK, group leader at the Fraunhofer Institute for Cell Therapy and Immunology, Germany, and then Professor for Biogerontological Engineering at Loughborough University, UK. With over 70 peer-reviewed publications, she has participated in several international research consortia in areas including regenerative medicine, cell and gene therapy development, and neurodegenerative diseases. Her industry experience includes startup CSO and VP of Research roles. Said Stolzing, “I’ve always been passionate about translational research in aging, and I’m very excited to join SRF, where I look forward to translating SRF’s basic science projects, initiating new projects, and helping generate the next wave of healthspan spinouts.”

Science and technology investor and longtime SRF board member Jim O’Neill has stepped in to lead the SENS Research Foundation as interim CEO. He will also spearhead the search for the incoming permanent CEO. O’Neill has advised, invested in, and nurtured more than sixty science and technology companies. While running the Thiel Foundation, he co-founded the Thiel Fellowship and helped create deep science fund Breakout Labs. Previously, he helped lead the U.S. Department of Health and Human Services as the principal associate deputy secretary, where he was responsible for overseeing policy and regulations at NIH, FDA, and CDC and led two major reforms of FDA. He supported the creation of the Armed Forces Institute for Regenerative Medicine, served on the steering committee of the Biomedical Advanced Research and Development Authority, and represented the United States on the U.S. delegation to the World Health Assembly. “Over the past decade, Mike and Aubrey built a team of scientists dedicated to damage repair and turned skeptics into advocates along the way,” said O’Neill. “The growing interest in technologies that can reverse aging is proof of their vision and determination. I’m excited to advance SRF’s vision to bring the benefits of such technologies to the public.”

“This is an historic moment for SENS Research Foundation,” said Dr. Aubrey de Grey, co-founder and Chief Science Officer of SRF. “Underdog may well become one of the most significant endeavors in the rejuvenation biotechnology industry, and Mike and Oki are the perfect team to make it a success. And with Jim’s deep experience in investment and policy, and Alex’s brilliance in research and teaching, I’ve no doubt our mission is in good hands. I’m delighted to have their leadership and expertise at SRF.”

About Underdog

Underdog Pharmaceuticals, Inc., is pursuing a mission to treat the underlying causes of age-related disease. The company develops simple and direct interventions targeting toxic forms of cholesterol using rationally designed molecules to provide the first true disease-modifying treatments for age-related diseases such as atherosclerosis, hypercholesterolemia, heart failure, and macular degeneration. Its products are based on novel derivatives of a well-known, safe compound and a new way of looking at cardiovascular disease created through a SENS Research Foundation program. For more information, please visit underdogpharma.com.

About SENS Research Foundation

SENS Research Foundation is a 501(c)(3) nonprofit that works to research, develop and promote comprehensive regenerative medicine solutions for the diseases of aging. SRF supports research projects focused on a damage repair paradigm at universities and institutes around the world with the goal of curing such age-related diseases as heart disease, cancer, and Alzheimer’s disease. SRF educates the public and trains researchers to support a growing regenerative medicine field through advocacy campaigns and educational programs. For more information, please visit sens.org.

About Kizoo

Kizoo provides mentoring and seed and early-stage financing with a focus on rejuvenation biotechnology. Having been entrepreneurs, VCs, and mentors in both high-growth tech and biotech companies for many years, with multiple exits and massive value created for the founders, Kizoo now brings this experience to the emerging field of rejuvenation biotech – a young industry that will eventually become much bigger than today’s largest technology markets.

As part of the Forever Healthy Group, Kizoo directly supports the creation of startups turning research on the root causes of aging into therapies and services for human application. Investments include AgeX, FoxBio, Turn.bio, Elevian, Oisin Biotechnologies, LIfT BioSiences, MAIA Biotechnology, and others. Forever Healthy’s other initiatives include the evaluation of new rejuvenation therapies, evidence-based curation of the world’s cutting-edge medical knowledge, funding research projects on the root causes of aging, and hosting the annual Undoing Aging Conference. For more information, please visit: kizoo.com and forever-healthy.org.

Notice:
This press release is not an offer to sell or a solicitation of an offer to buy securities in any jurisdiction. No securities commission or regulatory authority has approved or disapproved the information contained herein.

Media contacts:
For Underdog: [email protected]
For SRF: [email protected]
For Kizoo: [email protected]

Identification and Targeting of Noncanonical Death Resistant Cells

SENS Research Foundation Research Center

Forever Healthy Foundation Fellowship in Rejuvenation Biotechnology

Principal Investigator: Tesfahun Admasu / Alexandra Stolzing

When cells age, they lose their proliferative capacity and stop dividing in a phenomenon called senescence. Cellular senescence decreases the regenerative capacity of cells and tissues.

Throughout the aging process, senescent cells accumulate and secrete a characteristic set of proteins, called a senescence-associated secretory phenotype (SASP). Although SASPs act as tumor suppressors and recruit immune cells to repair damage, they also exacerbate the deleterious effects of senescence in the development of pathologies such as cancer, neurodegenerative diseases, and diabetes. Furthermore, SASPs can induce senescence in surrounding cells (called ‘secondary senescence’ or ‘paracrine senescence’), which can aggravate the effect. While primary senescent cells are fairly well characterized at this point, not much is known about secondary senescent cells and how they are arise in vivo.

Project Goals

This project seeks to confirm the hypothesis that secondary senescent cells are different from primary senescent cells, and would therefore need a different senolytic to eradicate them. In addition, the project will study how SASP components mediate the spread of senescence. This work could provide us with the basis for a new, therapeutically viable hypothesis for stopping the spread.

Job Opportunity: Research Assistant (Immunology)

SENS Research Foundation (SRF) is hiring a Research Assistant for our Research Center (RC) located in Mountain View, CA. SRF is an exciting, cutting edge non-profit dedicated to transforming the way the world researches and treats age-related disease.

We are seeking a Research Assistant in our Senescence Immunology group for a project geared toward developing therapeutic interventions to rejuvenate immune clearance of senescent cells. This project involves working with human blood samples and primary human cells. This is a full-time position.

Qualified candidates will have a BS or MS in the chemical/biological sciences and substantial bench experience. Duties will include mostly bench work in a small team-oriented environment.

Candidates should have experience in WBC purification, culturing primary cells, quantitative real-time PCR, western blot, immunofluorescence, ELISA, micro plate readers, FACS analysis, and data analysis. Candidates with experience in 2nd and 3rd generation lentivirus system are particularly encouraged to apply.

Interested candidates should submit a cover letter and resume to [email protected].

We offer an excellent benefits package including paid vacation and sick leave, fully covered health insurance (inclusive of dependents), an FSA program, and a company matched 401(k) plan, all of which is offered after a 90-day introductory period. SENS Research Foundation is an equal opportunity employer.

The position is available now and will be filled as soon as the qualified candidate is found. Salary is commensurate with job title.

Job Type: Full-time
Salary: $48,000 to $50,000/year

Use of this Web site constitutes acceptance of the Terms of Use and Privacy Policy.

© 2020 SENS Research Foundation – ALL RIGHTS RESERVED

Thank you for Subscribing to the SENS Research Foundation Newsletter.

You can also

or

You can