By Looped Hook and Targeting Crook: Potential Game-Changer for "Allotopic" Mitochondrial RNA

Posted by Michael Rae on March 15, 2012 | Chief Science Officer's Team

UCLA Researchers have exploited a recently-discovered mammalian system for the mitochondrial import of nuclear-encoded RNA to import, express, and demonstrate functional protein translation from engineered mRNA and tRNA constructs. They used this system, with modifications for mitochondrial targeting and orthotopic translation, to rescue respiration in human mitochondriopathy cells. While further characterization and extension is clearly needed, this approach appears offer great promise for the correction of age-related mitochondrial DNA mutations.

NFT-Specific Tau Vaccine Arrests Tangle Progress

Posted by Michael Rae on January 01, 2012 | Chief Science Officer's Team

The promising results of immunotherapy for the treatment and prevention of Alzheimer's disease has sparked an interest in utilizing the same approach for other forms of aging damage, including the clearance of pathological tau species from within neurons. A group led by Dr. Lars Ittner of the University of Sydney has recently published promising results from studies using a vaccine targeted at the neurofibrillary tangles (NFTs) that are characteristic of established tau accumulation.

How to Disable a Cellular Bomb: Findings and Tools on the Machinery of ALT

Posted by Michael Rae on December 02, 2011 | Chief Science Officer's Team

APBs - protein complexes associated with telomeric DNA in ALT (Alternative Lengthening of Telomeres) cancer cells - are the leading candidates for the sub-cellular site at which the ALT mechanism occurs. Recent work involving the generation of artificial APBs has shed light on their composition and function, providing hints as to how ALT might be disabled.

With True Cells Come True Benefits: the Potential of Human Pluripotent Stem Cells Released in a Model of Parkinson's Disease

Posted by Michael Rae on November 24, 2011 | Chief Science Officer's Team

Parkinson's disease is characterised by the loss of dopaminergic neurons from the substantia nigra, and cell therapy is being actively pursued as a means to replace the losses. Most trials to date have used fetal tissue, an approach that although transiently effective is unscalable and prone to immune rejection. Human dopaminergic neurons differentiated from stem cells have historically had poor therapeutic efficiency, but a new study using an improved differentiation protocol has shown much more positive results.

Nothin' Gonna Hold Me Back: Clearance of Senescent Cells for Tissue Rejuvenation

Posted by Michael Rae on November 06, 2011 | Chief Science Officer's Team

"Senescent" cells progressively restrict the body's capacity for tissue renewal and secrete factors that disrupt local tissue homeostasis. A new study provides proof-of-concept that ablation of these cells can delay - and potentially contribute to the reversal of - age-related tissue dysfunction and disease.

Novel Abeta Vaccine Reports First Human Data

Posted by Michael Rae on October 23, 2011 | Chief Science Officer's Team

Aggregates of beta-amyloid protein (Abeta) and other malformed proteins accumulate in both "normal" brain aging and neurodegenerative disease, leading to neuronal loss. Their removal by immunotherapy is a central plank of the SENS platform, and the most clinically advanced. Gantenerumab, a new fully human anti-Abeta monoclonal antibody, has just completed a Phase I trial.

A Green Light for the Ultimate Cure for Cancer

Posted by Michael Rae on October 14, 2011 | Chief Science Officer's Team

The elimination from the body of telomerase, the enzyme used by most cancer cells to maintain their DNA through unlimited numbers of cell divisions, is the central component of the WILT (Whole-body Interdiction of Lengthening of Telomeres) strategy proposed by SENS Research Foundation as a universal and unbreachable defence against all forms of cancer. Concerns have been raised, however, that telomerase may have other biologically important functions, making its elimination dangerous or impossible. Fortunately, recent work by Nobel laureate Carol Greider indicates a lack of any such activity.

From AGE to SENS5: Building Momentum For Human Rejuvenation

Posted by Michael Rae on August 25, 2011 | Chief Science Officer's Team

The fifth biannual Strategies for Engineered Negligible Senescence biomedical conference is just days away. Getting ready for the trip has cast my mind back not only to previous meetings of this exciting interdisciplinary series, and also to the recent 40th meeting of the American Aging Association (AGE). AGE was the first, and remains the premier, professional scientific organization focused specifically on biomedical research in aging.

Overtime Pay for the Municipal Waste Team

Posted by Michael Rae on August 05, 2011 | Chief Science Officer's Team

A comprehensive suite of rejuvenation biotechnologies must include the removal of extracellular aggregates from aging cells and tissues, particularly the brain. Recent work indicates that up-regulation of the activity of the native lysosomal pathway for clearance of beta-amyloid (Abeta) by the small molecule PADK can reverse existing Alzheimer-like pathology in mouse models, although caution is required in interpreting these results in the context of human disease.

Euromit 8

Posted by Matthew O'Connor on July 06, 2011 | MitoSENS at the Research Center

I recently travelled to Zaragosa, Spain, to attend the eighth European Meeting on Mitochondrial Pathology (Euromit 8). The conference was extremely relevant to the MitoSENS project, and I was very lucky to have the opportunity to attend. For me, the most striking aspect of this scientific conference was the cross-sectional interaction between clinicians and basic scientists.

Robust, Realistic, Relevant Rejuvenation with Tau-Targeting Immunotherapy

Posted by Michael Rae on June 21, 2011 | Chief Science Officer's Team

Neurofibrillary tangles - accumulations of abnormal tau protein - are thought to play a central role in Alzheimer's disease and other neurodegenerative conditions. Here we review a recent report in which immunotherapy was used to clear tau aggregates from a highly accurate mouse tauopathy model, resulting in functional recovery on multiple cognitive tests.

Efficient, Mutation-Free, Large-Payload Gene Therapy of iPS

Posted by Michael Rae on May 23, 2011 | Chief Science Officer's Team

Efficient, safe methods of gene therapy will be essential enabling technologies for the repair or obviation of several of the cellular and molecular lesions driving age-related disease and dysfunction. A recent paper from the Scripps Institute demonstrates a major step in this direction with the successful use of helper-dependent adenoviral vectors to rescue cells defective in lamin A, without detectable mutational side-effects.

Pages