Posted by Michael Rae on July 29, 2010 | Chief Science Officer's Team

Haematopoietic stem cells (HSC) exhibit a range of functional declines during biological aging. There has been comparatively little exploration of the possibility of outside causes for age-related HSC dysfunctions, such as the role of age-related shifts in the systemic and local environment and the aging of the bone marrow niche. In a recent report, Dr. Amy Wagers' group have demonstrated the reality - and the reversibility - of both of these influences on age-related HSC dysfunction.

Posted by Michael Rae on July 15, 2010 | Chief Science Officer's Team

Last summer, California-based LifeStar Institute assembled a panel of leaders in the science of aging to ask them the question at the core of their research. "How far can the potential of new biomedical therapies to slow, arrest, or even reverse the damage of aging be brought to bear against the challenge of global graying?" The most important conclusion reached by the participants was that an aggressive program of investment to realize that potential is not only justified, but necessary on humanitarian, economic and social grounds.

Posted by Michael Rae on July 9, 2010 | Chief Science Officer's Team

A recent landmark report from researchers at Yale and Duke universities heralds a significant advance towards the tissue engineering of replacement lungs. Decellularised donor lungs repopulated with progenitor cells were matured in vitro and then implanted into living rats, where the tissue participated in gas exchange to an extent functionally approaching that of native lung tissue. This study represents a crucial proof-of-principle that the decellularisation/repopulation approach can be effective in another complex organ.